

Occurrence of TBA in Ground Water A Summary of Existing Studies

Ravi Kolhatkar

Group Environmental Management Company,

A BP Affiliated Company

Presentation at SAM Forum and Symposium 25th September, 2002.

Outline

- Potential Dissolution From Gasoline?
- Potential In-situ Biodegradation of MTBE?
- Potential Abiotic Transformation of MTBE?
 - Artifacts of sampling and analytical protocols
 - In-situ transformation?
- Potential Biodegradation of TBA

Potential Dissolution From Gasoline

Gasoline-Water Equilibrium Partitioning

$$C_{TBA}^{water} = C_{MTBE}^{water} * \left(\frac{TBA}{MTBE}\right)_{gasoline} * \left(\frac{K_{fw}^{MTBE} + \frac{V_{wat}}{V_{gas}}}{K_{fw}^{TBA} + \frac{V_{wat}}{V_{gas}}}\right)$$

- Where, K_{fw} are fuel-water partitioning coefficients (mg/L in fuel/mg/L in water at equilibrium)
 - $K_{fw}^{MTBE} = 15.5$ (Cline et al., 1991)
 - $-K_{fw}^{TBA} = 0.24$, average of 0.15 and 0.33 (Zwank et al., 2002)
- Kramer-Douthit, 2000. (volume ratio = 4)
- Zwank and others, 2002. (volume ratio = 1)
- Kramer and Hayes, 1987. (volume ratio =1)

Estimated TBA and MTBE Content in Gasoline – Analyses of Past Studies

	Measured	Measured	Estimated		Estimated %v/v in ga	asoline
	MTBE (aq)	TBA (aq)	TBA/MTBE in original	gasoline	MTBE	TBA
	(ppb)	(ppb)	%w/w	%v/v		
	5 414					
Ki	ramer-Douthit I	-	-			
_	1330000	1120000	18.3%	17.2%	3.5%	0.6%
	1990000	1430000	15.6%	14.7%	5.2%	0.8%
	1480000	1270000	18.7%	17.5%	3.9%	0.7%
	2000000	1690000	18.4%	17.2%	5.3%	1.0%
	1390000	1270000	19.9%	18.6%	3.7%	0.7%
Zv	vank et al. 2002	2 data (persoa	nl communication with	Dr. Schmidt)		
	917638.4	341462.4	2.80%	2.62%	2.046%	0.057%
	11523.2	2415.1	1.58%	1.48%	0.026%	0.000%
	10187.5	1318.0	0.97%	0.91%	0.023%	0.000%
	1397587.6	121435.5	0.65%	0.61%	3.116%	0.020%
	2455632.0	212639.4	0.65%	0.61%	5.475%	0.036%
	87723.4	6067.4	0.52%	0.49%	0.196%	0.001%
	888152.2	59060.4	0.50%	0.47%	1.980%	0.010%
Kr	ramer and Haye	es (1987)				
	43700	22300	3.83%	3.60%	0.097%	0.004%
	35100	15900	3.40%	3.19%	0.078%	0.003%
	966000	933000	7.26%	6.81%	2.154%	0.156%

TBA in GW – Potential Sources Analyses of Past Studies

TBA in GW – Potential Sources Analyses of Past Studies

Potential MTBE Biodegradation

Scope of BP-EPA Study

- •700 ground water samples from 74 BP retail sites in 50 cities (1999)
- •Another 250 ground water samples from 18 sites (2000)
- •GW samples preserved with Tri-sodium Phosphate (TSP)

Ground Water Geochemistry BP-EPA Study

Site in NJ BP-EPA Study

TBA in GW at NJ Site BP-EPA Study

Laboratory Microcosms Killed Controls BP-EPA Study

Laboratory Microcosms Indicating MTBE Biodegradation BP-EPA Study

TBA in Live Laboratory Microcosms BP-EPA Study

TBA in Anaerobic Microcosms (NJ Site) BP-EPA Study

Potential Abiotic Transformation

Potential Sample Preservation and Shipping Issues

- Potential for Acid Hydrolysis of MTBE in HCl-preserved ground water samples (O'Reilly et al. 2001)
- Hydrolysis Rate Constant (personal communication with Dr. John Wilson, EPA)

$$\ln k_{pH=2} = \frac{-14360}{(273+t)} + 38.699 \text{ at } pH = 2$$

where,

 $k_{pH=2}$ = rate constant (per hour),

t = sample temperature (deg C)

: at sample pH,
$$k_{pH} = k_{pH=2} *10^{(pH-2)}$$

Potential Contribution of Acid Hydrolysis in GW Samples

In-Situ Acid Hydrolysis?

- Rapid hydrolysis of MTBE to TBA on strongly acidic ion exchange resin (O'Reilly et al. 2001)
 - Measured rate constant: 0.79 d⁻¹ at pH=5.5, 25 °C
 - Postulate a similar mechanism in subsurface, especially in clay geology
 - Expected rate constant in neutral ground water: 0.025 d⁻¹ at 25 °C

Natural Biodegradation of TBA

Summary of Published/Ongoing Research

Aerobic

- Salanitro et al., (2000)
- Bob Borden and others, (Battelle 1999 poster)
- USGS papers (ES&T 2000, 2001)
- John Novak and others, (early 1990s)
- BioGAC is being looked as potential technology for ex-situ treatment
- Ongoing API study

Anaerobic

- Mike Day, 2001 (MNA of TBA in TX)
- BP-EPA field data from 1999-2000 survey
- Kevin Finneran, ES&T 2001 [Fe(III)]
- USGS paper in ES&T 2002 (nitrate, Mn(IV), and sulfate)

API Study on MTBE MNA (initiated in 2000)

- Phase I: Site Selection
 - Selected 18 sites after reviewing ~ 60 sites (BP, Chevron, ExxonMobil)
 - no ongoing remediation, decent characterization and stable/decreasing MTBE plume
 - 13 CA, 4 NJ and 1 PA
- Phase II: Field Monitoring for Geochemical Indicators
 - One time ground water sampling and analytical work by Microseeps
 - Data evaluation complete, 10 sites recommended for follow-up research (Battelle 2001 manuscript)
- Phase III: Laboratory Microcosms with ¹⁴C-MTBE and ¹⁴C-TBA
 - Surbek-Art Environmental/University of Oklahoma (Dr. Joe Suflita)
 - Aerobic and Anaerobic incubations
 - 10 incubations with ¹⁴C-MTBE
 - 4 incubations with ¹⁴C-TBA

Methane and Sulfate in Ground Water – API Study

Similarity of Plume Geochemistry

			BP-EPA 74 Sites	API 18 Sites
Plume Geochemistry		Designatio n	Number of Sites (% of Sites)	Number of Sites (% of Sites)
Methanogenic (methane > 0.5 mg/L)	Sulfate depleted	M+SD	43 (58%)	8 (44%)
Methanogenic (methane > 0.5 mg/L)	Sulfate available	M+SA	5 (7%)	6 (33%)
Weakly methanogenic (methane < 0.5 mg/L)	Sulfate depleted	WM+SD	8 (11%)	1 (6%)
Weakly methanogenic (methane < 0.5 mg/L)	Sulfate available	WM+SA	5 (7%)	0 (0%)
Nitrate depleted, no methane (nitrate N < 0.05 mg/L)	Sulfate available	ND+SA	13 (17%)	3 (17%)

76% to 83% of all sites are anaerobic (M+SD, M+SA or WM+SD)

API - Ongoing Microcosm Studies

¹⁴C-MTBE incubations for all sites

Site ID	Geochemistry	¹⁴ C-TBA treatment?	Other amendments
Millbrae, CA-1	M+SA	No	Sulfate; two samples
Westlake, CA	M+SA	Yes	
Redding, CA	M+SD	No	
Monessen, PA	M+SD	Yes	Sulfate
San Mateo, CA	M+SD	Yes	
San Jose-2, CA	M+SA	No	
Agoura Hills, CA	ND+SA	Yes	Sulfate; Nitrate
San Jose-1, CA	ND+SA	No	
Petaluma, CA	M+SD	No	Sulfate
Millbrae, CA-2	M+SA	No	Sulfate; two samples 2

6

API - Ongoing Microcosm Studies

¹⁴C-MTBE incubations for all sites

Site ID	Geochemistry	14CO ₂ recovery from 14C-TBA aerobic degradation at 200 days?	14CO ₂ recovery from 14C-MTBE aerobic degradation at 200 days?
Millbrae, CA-1	M+SA	-	72%
Westlake, CA	M+SA	95%	74%
Redding, CA	M+SD	-	92%
Monessen, PA	M+SD	67%	39%
San Mateo, CA	M+SD	45%	79%
San Jose-2, CA	M+SA	-	60%
Agoura Hills, CA	ND+SA	53%	none
San Jose-1, CA	ND+SA	-	none
Petaluma, CA	M+SD	-	none
Millbrae, CA-2	M+SA	-	53 % ²

Questions?

TBA in TX Microcosms (anaerobic) EPA Study

MTBE in GW (ppb)

TBA in GW – CA Sites in API Study

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

MTBE in GW (ppb)

TBA in GW – Potential Sources BP-EPA Study

About a third of all sites suggest MTBE biodegradation to TBA

TBA in GW – Potential Sources API Study

About a third of all sites suggest MTBE biodegradation to TBA